Internet Protocol address




An IP address (Internet Protocol address) is a unique address that certain electronic devices use in order to identify and communicate with each other on a computer network utilizing the Internet Protocol standard (IP)—in simpler terms, a computer address. Any participating network device—including routers, switches, computers, infrastructure servers (e.g., NTP, DNS, DHCP, SNMP, etc.), printers, Internet fax machines, and some telephones—can have their own address that is unique within the scope of the specific network. Some IP addresses are intended to be unique within the scope of the global Internet, while others need to be unique only within the scope of an enterprise.
An identifier for a computer or device on a TCP/IP network. Networks using the TCP/IP protocol route messages based on the IP address of the destination. The format of an IP address is a 32-bit numeric address written as four numbers separated by periods. Each number can be zero to 255. For example, 1.160.10.240 could be an IP address. Within an isolated network, you can assign IP addresses at random as long as each one is unique. However, connecting a private network to the Internet requires using registered IP addresses (called Internet addresses) to avoid duplicates.
Sometimes called a “dotted quad”. A unique number consisting of four parts seperated by dots, e.g. 1.1.1.1 is a IP number – if a machine does not have an IP number, it is not really on Internet. Most machines also have one or more Domain Names that are easier for people to remember.
In the most widely installed level of the Internet Protocol (IP) today, an IP address is a 32-bit number that identifies each sender or receiver of information that is sent in packets across the Internet. When you request an HTML page or send e-mail, the Internet Protocol part of TCP/IP includes your IP address in the message (actually, in each of the packets if more than one is required) and sends it to the IP address that is obtained by looking up the domain name in the Uniform Resource Locator you requested or in the e-mail address you’re sending a note to. At the other end, the recipient can see the IP address of the Web page requestor or the e-mail sender and can respond by sending another message using the IP address it received. An IP address has two parts: the identifier of a particular network on the Internet and an identifier of the particular device (which can be a server or a workstation) within that network. On the Internet itself – that is, between the router that move packets from one point to another along the route – only the network part of the address is looked at. The Network Part of the IP Address The Internet is really the interconnection of many individual networks (it’s sometimes referred to as an internetwork). So the Internet Protocol (IP) is basically the set of rules for one network communicating with any other (or occasionally, for broadcast messages, all other networks). Each network must know its own address on the Internet and that of any other networks with which it communicates. To be part of the Internet, an organization needs an Internet network number, which it can request from the Network Information Center (NIC). This unique network number is included in any packet sent out of the network onto the Internet. The Local or Host Part of the IP Address In addition to the network address or number, information is needed about which specific machine or host in a network is sending or receiving a message. So the IP address needs both the unique network number and a host number (which is unique within the network). (The host number is sometimes called a local or machine address.) Part of the local address can identify a subnetwork or subnet address, which makes it easier for a network that is divided into several physical subnetworks (for examples, several different local area networks or ) to handle many devices. IP Address Classes and Their Formats