Experimental Security Analysis of a Modern Automobile




Modern automobiles are no longer mere mechanical devices; they are pervasively monitored and controlled by dozens of digital computers coordinated via internal vehicular networks. While this transformation has driven major advancements in efficiency and safety, it has also introduced a range of new potential risks. In this paper we experimentally evaluate these issues on a modern automobile and demonstrate the fragility of the underlying system structure. We demonstrate that an attacker who is able to infiltrate virtually any Electronic Control Unit (ECU) can leverage this ability to completely circumvent a broad array of safety-critical systems. Over a range of experiments, both in the lab and in road tests, we demonstrate the ability to adversarially control a wide range of automotive functions and completely ignore driver input — including disabling the brakes, selectively braking individual wheels on demand, stopping the engine, and so on. We find that it is possible to bypass rudimentary network security protections within the car, such as maliciously bridging between our car’s two internal subnets. We also present composite attacks that leverage individual weaknesses, including an attack that embeds malicious code in a car’s telematics unit and that will completely erase any evidence of its presence after a crash. Looking forward, we discuss the complex challenges in addressing these vulnerabilities while considering the existing automotive ecosystem. Through 80 years of mass-production, the passenger automobile has remained superficially static: a single gasolinepowered internal combustion engine; four wheels; and the familiar user interface of steering wheel, throttle, gearshift, and brake. However, in the past two decades the underlying control systems have changed dramatically. Today’s automobile is no mere mechanical device, but contains a myriad of computers. These computers coordinate and monitor sensors, components, the driver, and the passengers. Indeed, one recent estimate suggests that the typical luxury sedan now contains over 100 MB of binary code spread across 5

Free download research paper